\qquad Date \qquad Class \qquad

LEssom Practice B

4.3 Using Matrices to Transform Geometric Figures

Triangle $J K L$ has vertices $J(-3,1), K(2,2)$, and $L(1,-2)$.

Use a matrix to transform triangle JKL. Find the coordinates of the vertices of the image.

1. Translate 5 units right, 6 units down.
2. Enlarge by a factor of 7 .
3. Translate 2 units left, 4 units up.
4. Reduce by a factor of 0.25 .

Reflect or rotate triangle $A B C$ with vertices
$A(-2,1), B(-1,4)$, and $C(2,2)$. Find the coordinates of the vertices of the image. Describe the transformation.
5. $\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]$
6. $\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]$

7. $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$
8. $\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$

Solve.
9. a. Natalie drew a figure with vertices
$H(-3,-2), O(-3,3), U(0,5), S(3,3), E(3,-2)$
to use as a pattern on a sweatshirt. Write a matrix that defines the figure.
b. Natalie wants to enlarge the figure by a factor of 5 . Describe a method she can use.
c. What are the coordinates of Natalie's enlarged figure?
H^{\prime} \qquad O^{\prime} \qquad U' S^{\prime} \qquad E^{\prime} \qquad

