\qquad Date \qquad Class \qquad

LEsson, Practice B

4-4 Determinants and Cramer's Rule

Find the determinant of each matrix.

1. $\left[\begin{array}{rr}8 & 2 \\ 4 & -1\end{array}\right]$
2. $\left[\begin{array}{rr}-6 & 3 \\ 9 & -5\end{array}\right]$
3. $\left[\begin{array}{ll}-2 & 8 \\ -3 & 7\end{array}\right]$
4. $\left[\begin{array}{rrr}1 & 0 & -1 \\ 5 & -2 & 0 \\ 1 & 6 & 2\end{array}\right]$
5. $\left[\begin{array}{rrr}0 & -4 & 5 \\ 2 & 4 & 3 \\ 1 & 1 & -1\end{array}\right]$
6. $\left[\begin{array}{rrr}-4 & 3 & 1 \\ 7 & -2 & 0 \\ 1 & -1 & 2\end{array}\right]$

Use Cramer's rule to solve each system of equations.

7. $\left\{\begin{array}{l}2 x+3 y=-1 \\ 3 x+2 y=16\end{array}\right.$
8. $\left\{\begin{array}{l}4 x-3 y=9 \\ 3 x+2 y=28\end{array}\right.$
9. $\left\{\begin{array}{l}8 x-3 y=20 \\ 3 x-2 y=11\end{array}\right.$
10. $\left\{\begin{array}{l}4 y=-5 x+33 \\ 2 y=3 x-11\end{array}\right.$
11. $\left\{\begin{array}{l}27+4 y=3 x \\ y=\frac{1}{3} x-8\end{array}\right.$
12. $\left\{\begin{array}{l}7-5 y+4 x=0 \\ 16-2 y-5 x=0\end{array}\right.$

Solve.
13. On Monday, Marla babysat for 4 hours, did yard work for 2 hours, and earned a total of $\$ 41$. On Friday, she babysat for 5 hours, did yard work for 3 hours, and earned a total of $\$ 55$.
a. Write a system of equations.

Let $x=$ Marla's hourly rate for babysitting, and $y=$ her hourly rate for yard work. \qquad
b. Write the coefficient matrix. Evaluate its determinant.
c. Use Cramer's rule to find x and y.
d. What is Marla's hourly rate for each activity?

Practice A

4-4 Determinants and Cramer's Rule

Find the determinant of each matrix.

1. $\left[\begin{array}{cc}6 & -2 \\ 1 & 10\end{array}\right]$
2. $\left[\begin{array}{rr}3 & -1 \\ -7 & 2\end{array}\right]$
3. $\left[\begin{array}{rr}2 & 9 \\ 1 & -3\end{array}\right]$
$=6(\underline{10})-(\underline{1})(\underline{-2})$

107
Use Cramer's rule to solve each system of equations.

$$
\text { 5. }\left\{\begin{array}{l}
x-2 y=-9 \\
3 x+y=1
\end{array}\right.
$$

a. Write the coefficient matrix.

b. Find D , the determinant of the coefficient matrix.

c. Use Cramer's rule to write the solutions for x and y.
d. Evaluate the determinants in the numerators and solve for x and y. \qquad
6. $\left\{\begin{array}{l}2 x+3 y=4 \\ x-2 y=9\end{array}\right.$
$x=5 ; y=-2$
7. $\left\{\begin{array}{l}3 x+y=5 \\ 2 x-3 y=18\end{array}\right.$
$x=3 ; y=-4$
8. $\left\{\begin{array}{l}x+5 y=11 \\ 2 x-3 y=9\end{array}\right.$
$x=6 ; y=1$

	27	Holt Algebra 2

Practice C

4-4 Determinants and Cramer's Rule
Find the determinant of each matrix.

1. $\left[\begin{array}{rr}12 & 5 \\ -14 & -3\end{array}\right]$	2. $\left[\begin{array}{rrr}-6 & -1 & -2 \\ 2 & 5 & 0 \\ 4 & 3 & 1\end{array}\right]$	3. $\left[\begin{array}{rrr}2 & 4 & -1 \\ 0 & 3 & -3 \\ 1 & 0 & 6\end{array}\right]$
34	0	27

Use Cramer's rule to solve each system of equations.
4. $\left\{\begin{array}{l}4 x-3 y=3 \\ -3 x+2 y=-1\end{array}\right.$
5. $\left\{\begin{array}{l}5 x-4 y=22 \\ 4 x+3 y=-1\end{array}\right.$
6. $\left\{\begin{array}{l}6 x-7 y=-11 \\ 5 x+4 y=40\end{array}\right.$
$(-3,-5)$
$(2,-3)$
$(4,5)$
7. $\left\{\begin{array}{l}8 x-5 y=61 \\ 3 x+4 y=17\end{array}\right.$
8. $\left\{\begin{array}{l}x-6 y=21 \\ 3 x+5 y=17\end{array}\right.$
9. $\left\{\begin{array}{l}5 x-6 y=-2 \\ 4 x-5 y=-3\end{array}\right.$
$(7,-1)$

$$
(9,-2)
$$

0. $\left\{\begin{array}{l}3 x-2 y+4 z=0 \\ 6 x+5 y-3 z=7 \\ 5 x+3 y+5 z=11\end{array}\right.$
1. $\left\{\begin{array}{l}4 x-2 y+z=-6 \\ 3 x+3 y+5 z=-8 \\ 2 x-4 y-3 z=2\end{array}\right.$
2. $\frac{(8,7)}{-2 x+6 y+3 z=-10} \begin{aligned} & 5 x-5 y-4 z=9 \\ & 3 x+2 y=0\end{aligned}$
$\left\{\begin{array}{l}5 x-5 y-4 z=9 \\ 3 x+2 y=0\end{array}\right.$
$1 \begin{aligned} & 6 x+5 y+5 z=7 \\ & 5 x+3 y+5 z=11\end{aligned}$
2x
$(1,3,-4)$
$(2,-3,4)$

Solve.
13. Travis invested $\$ 20,000$ in two simple interest accounts. He part at 4.5% interest and the rest at 3.5% interest. He earned $\$ 785$ in

total interest per year. a. Write the problem as a system of equations.	$\left\{\begin{array}{l} x+y=20,000 \\ 0.045 x+0.035 y=785 \end{array}\right.$
b. Find the value of the determinant of the coefficient matrix.	-0.01
	20,000
	785.035
c. Use Cramer's rule to write the solution for the amount Travis invested at 4.5\%.	-. 01
d. How much did Travis invest at 4.5% interest?	\$8500

d. How much did Travis invest at 4.5% interest?

Practice B

4-4 Determinants and Cramer's Rule

Find the determinant of each matrix.

1. $\left[\begin{array}{rr}8 & 2 \\ 4 & -1\end{array}\right]$
2. $\left[\begin{array}{rr}-6 & 3 \\ 9 & -5\end{array}\right]$
3. $\left[\begin{array}{ll}-2 & 8 \\ -3 & 7\end{array}\right]$
-16 \qquad 10
4. $\left[\begin{array}{rrr}1 & 0 & -1 \\ 5 & -2 & 0 \\ 1 & 6 & 2\end{array}\right]$

$$
\text { 5. }\left[\begin{array}{rrr}
0 & -4 & 5 \\
2 & 4 & 3 \\
1 & 1 & -1
\end{array}\right]
$$

$$
\text { 6. }\left[\begin{array}{rrr}
-4 & 3 & 1 \\
7 & -2 & 0 \\
1 & -1 & 2
\end{array}\right]
$$

\qquad
-30

$$
\begin{array}{r}
-3 \\
\hline
\end{array}
$$

Use Cramer's rule to solve each system of equations.
7. $\left\{\begin{array}{l}2 x+3 y=-1 \\ 3 x+2 y=16\end{array}\right.$
8. $\left\{\begin{array}{l}4 x-3 y=9 \\ 3 x+2 y=28\end{array}\right.$
9. $\left\{\begin{array}{l}8 x-3 y=20 \\ 3 x-2 y=11\end{array}\right.$

- $\quad(10,-7)$

11. $\frac{(6,5)}{\begin{array}{l}27+4 y=3 x \\ y=\frac{1}{3} x-8\end{array}}$
12. $\frac{(1,-4)}{\begin{array}{l}7-5 y+4 x=0 \\ 16-2 y-5 x=0\end{array}}$
13. $\left\{\begin{array}{l}4 y=-5 x+33 \\ 2 y=3 x-11\end{array}\right.$

$$
y=\frac{\overline{3}^{x}}{x-0}
$$

$$
(-3,-9)
$$

$(2,3)$

Solve.

13. On Monday, Marla babysat for 4 hours, did yard work for 2 hours,
and earned a total of $\$ 41$. On Friday, she babysat for 5 hours,
did yard work for 3 hours, and earned a total of $\$ 55$.
a. Write a system of equations.

Let $x=$ Marla's hourly rate for babysitting, and $y=$ her hourly rate for yard work.
b. Write the coefficient matrix. Evaluate its determinant.
c. Use Cramer's rule to find x and y.
d. What is Marla's hourly rate for each activity?

$\left\{\begin{array}{l}4 x+2 y=41 \\ 5 x+3 y=55\end{array}\right.$
$\left[\begin{array}{ll}4 & 2 \\ 5 & 3\end{array}\right] ;$ det $=\left\|\begin{array}{ll}4 & 2 \\ 5 & 3\end{array}\right\|=2$
$x=6.5 ; y=7.5$

Babysitting: \$6.50, yard work: \$7.50

Reteach

4-4 Determinants and Cramer's Rule
A square matrix has the same number of rows as columns. The determinant of a square matrix is shown by $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$.
To find the determinant of a 2×2 matrix, find the product of each diagonal, beginning at the upper left corner. Then subtract.
$\operatorname{det}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-c b$
$\operatorname{det}\left[\begin{array}{ll}2 & 3 \\ 5 & 9\end{array}\right]=\left|\begin{array}{ll}2 & 3 \\ 5 & 9\end{array}\right|=2(9)-5(3)=18-15=3$
Vertical brackets indicate a determinant.

Find the determinant of each matrix.

$$
\text { 1. } \operatorname{det}\left[\begin{array}{ll}
-1 & 2 \\
-5 & 4
\end{array}\right]=\left|\begin{array}{ll}
-1 & 2 \\
-5 & 4
\end{array}\right|=-1(4)-(-5)(2)=
$$

\qquad
2. $\operatorname{det}\left[\begin{array}{rr}\frac{3}{2} & -\frac{1}{4} \\ \frac{1}{2} & \frac{1}{4}\end{array}\right]=\left|\begin{array}{cc}\frac{3}{2} & -\frac{1}{4} \\ \frac{1}{2} & \frac{1}{4}\end{array}\right|=\frac{3}{2}\left(\frac{1}{4}\right)-\left(\frac{1}{2}\right)\left(-\frac{1}{4}\right)=\quad \frac{1}{2}$
3. $\operatorname{det}\left[\begin{array}{ll}-3 & -4 \\ -1 & -6\end{array}\right]=\left|\begin{array}{ll}-3 & -4 \\ -1 & -6\end{array}\right|=-3(\underline{-6})-(-1)(\underline{-4})=$ \qquad
4. $\operatorname{det}\left[\begin{array}{rr}-2.4 & 0.5 \\ 1.2 & 2\end{array}\right]=\left|\begin{array}{rr}-2.4 & 0.5 \\ 1.2 & 2\end{array}\right|=\longrightarrow-5.4$
5. $\operatorname{det}\left[\begin{array}{rr}\frac{1}{6} & 9 \\ \frac{2}{3} & -12\end{array}\right]=\left|\begin{array}{rr}\frac{1}{6} & 9 \\ \frac{2}{3} & -12\end{array}\right|=\square-8$
6. $\operatorname{det}\left[\begin{array}{rr}8 & \frac{2}{5} \\ -15 & \frac{3}{4}\end{array}\right]=\left|\begin{array}{rr}8 & \frac{2}{5} \\ -15 & \frac{3}{4}\end{array}\right|=$ \qquad

Holt Algebra 2

