Linear Systems \& STAT - Exam Two Review - Augmented Matrices

Name:
Date:
Period:

Put the given equations in standard form. (Show your work)

1) $3 x-4=13 y$
2) $4 a=6 b$
3) $5 e+6 f=21-3 g$
4) $8 x-3=4 y-23 z$

Create an augmented matrix for the given equations

$$
\text { 5) }\left\{\begin{array}{rlr}
3 x+4 y+2 z & =11 \\
2 x+3 y-z & =4 & \text { 6) }
\end{array} \quad 2 \mathrm{x}-1=3 \mathrm{y} \text { and } 2+3 \mathrm{y}=-\mathrm{x}\right.
$$

Solve the following system with or without technology be sure to show all of your work.
7) $7 x-3 y=-1$

$$
x+2 y=12
$$

Solve the following two system of equations with or without technology. Explain your answer.

$$
\text { 8) } \quad \begin{aligned}
& -x-5 y-5 z=2 \\
& 4 x-5 y+4 z=19 \\
& x+5 y-z=-20
\end{aligned}
$$

9) Create a system of equations for the following problem. Don't forget to identify the variables first. Chase and Sara went to the candy store. Chase bought 5 pieces of fudge and 3 pieces of bubble gum for a total of $\$ 5.70$. Sara bought 2 pieces of fudge and 10 pieces of bubble gum for a total of $\$ 3.60$. Which system of equations could be used to determine the cost of 1 piece of fudge, and 1 piece of bubble gum?
10) Using your system of equations for the problem in \#9 create an augmented matrix that could be used to solve for the variables
11) Solve the above system and make some conclusions about the result.

Linear Systems \& STAT - Exam Two Review - Augmented Matrices

Name:
Date:
Period:
12) Given the following set of ordered pairs plot the figure on the graph below and create a matrix to define the figure. $(0,-2),(-1,6),(1,4),(4,2),(1,1)$
13) Perform a dilation of the figure make sure you show your matrix multiplication.
14) Perform a reflection of the matrix using one of the given reflection matrices. (Show your Work)

1) $y=\operatorname{axis}\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ 2) $x=\operatorname{axis}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ 3) $y=x\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ 4) $y=-x\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$
2) Plot the final transformed figure with the original figure. Use the given $x-y$ chart to show your final transformed points.

Review

