\qquad Date \qquad Class \qquad

LEsson Practice A

3-3 Solving Systems of Linear Inequalities

Graph each system of inequalities.

1. $\left\{\begin{array}{l}y \leq 4 \\ y>x-2\end{array}\right.$
a. In order to graph $y \leq 4$, draw the line for $y=4$.
b. Now shade the area below the line to show $y \leq 4$.
c. In order to graph $y>x-2$, draw the line that represents $y=x-2$. Make the line dashed since the line is not included in the inequality.
d. Shade the area above the line.

e. Describe the solution region of this system of inequalities.
2. $\left\{\begin{array}{l}y>x \\ y>-x\end{array}\right.$

3. $\left\{\begin{array}{l}y<2 x+1 \\ y \geq x\end{array}\right.$

4. $\left\{\begin{array}{l}x \leq-4 \\ y \geq 2\end{array}\right.$

5. $\left\{\begin{array}{l}y<x-4 \\ y>-3 x+2\end{array}\right.$

Practice A

Solving Systems of Linear Inequalities
Graph each system of inequalities.

1. $\left\{\begin{array}{l}y \leq 4 \\ y>x-2\end{array}\right.$
a. In order to graph $y \leq 4$, draw the line for $y=4$.
b. Now shade the area below the line to show $y \leq 4$.
c. In order to graph $y>x-2$, draw the line that represents $y=x-2$. Make the line dashed since the line is not included in the inequality.
d. Shade the area above the line.

e. Describe the solution region of this system of inequalities.

Possible answer: The solution region is the area where the two shading patterns overlap.
2. $\left\{\begin{array}{l}y>x \\ y>-x\end{array}\right.$

4. $\left\{\begin{array}{l}y<2 x+1 \\ y \geq x\end{array}\right.$

3. $\left\{\begin{array}{l}x \leq-4 \\ y \geq 2\end{array}\right.$

5. $\left\{\begin{array}{l}y<x-4 \\ y>-3 x+2\end{array}\right.$

19
Holt Algebra 2

Practice C

Solving Systems of Linear Inequalities
Graph the system of inequalities, and classify the figure created by

$$
\text { 2. }\left\{\begin{array}{l}
y<-3 x+4 \\
y>-8 \\
y<x+5 \\
x>-6
\end{array}\right.
$$

\qquad

3. $\left\{\begin{array}{l}y \leq-\frac{2}{3} x+3 \\ y \leq x \\ y \geq-\frac{2}{3} x-5 \\ x \leq 4\end{array} \quad\right.$ Trapezoid

Solve.

4. Anton wants to divide a maximum of $\$ 20,000$ between two simple interest investment accounts. One pays 6\% interest and the other pays 7.5\% One pays 6% interest and the other pays 7.5%
interest. Write and graph a system of inequalities interest. Write and graph a system of inequalities
that shows the amounts Anton can invest in each that shows the amounts Anton can invest in each
account and still earn at least $\$ 1300$ per year.

$$
\{x+y \leq 20,000
$$

$$
\left\{\begin{array}{l}
0.06 x+0.075 y \geq 1300 \\
\hline
\end{array}\right.
$$

Practice B
Solving Systems of Linear Inequalities Graph each system of inequalities.

1. $\left\{\begin{array}{l}y \leq 3 x-5 \\ y<-\frac{1}{2} x+4\end{array}\right.$
2. $\left\{\begin{array}{l}y<x+5 \\ y \geq 4 x-2\end{array}\right.$

Graph the system of inequalities, and classify the figure created by the solution region.

4. $\left\{\begin{array}{l}y \leq-x+4 \\ y \leq 3 \\ y \geq 0 \\ y \geq-2 x-1\end{array}\right.$
Trapezoid

$$
\begin{aligned}
& \text { Solve. } \\
& \text { 5. The Thespian Club is selling tickets to its annual variety } \\
& \text { show. Prices are } \$ 8 \text { for an adult ticket and } \$ 4 \text { for a } \\
& \text { student ticket. The club needs to raise } \$ 1000 \text { to pay for } \\
& \text { costumes and stage sets. The auditorium has a seating } \\
& \text { capacity of } 240 \text {. Write and graph a system of } \\
& \text { inequalities that can be used to determine how many } \\
& \text { tickets have to be sold for the club to meet its goal. } \\
& \qquad\left\{\begin{array}{l}
8 x+4 y \geq 1000 \\
x+y \leq 240
\end{array}\right. \\
& \hline
\end{aligned}
$$

20

Reteach

Solving Systems of Linear Inequalities

To use graphs to find the solution to a system of inequalities:

1. Draw the graph of the boundary for the first inequality. Remember to use a solid line for \leq or \geq and a dashed line for \langle or $>$.
. Shade the region above or below the boundary line that is a solution of the inequality
2. Draw the graph of the boundary for the second inequality.
3. Shade the region above or below the boundary line that is a solution of the inequality using a different pattern
4. The region where the shadings overlap is the solution region.

Graph $\left\{\begin{array}{l}y \leq x+2 \\ x>1\end{array} \quad\right.$ Graph $y \leq x+2$.

On the same plane, graph $x>1$.

Graph $x=1$.
Use a dashed line for the boundary.
Shade the region to the right of the lin
Check: Test a point in the solution region in both inequalities.

$$
\text { Try }(2,2) \text {. }
$$

$y \leq x+2 \quad x>1$
$2 \stackrel{?}{\leq} 2+2 \quad 2>1 \checkmark$
$4 \leq 2 \checkmark$
Graph the system of inequalities.

1. $\left\{\begin{array}{l}y>-x+ \\ y>2\end{array}\right.$
$y \leq 2$
a. Shade Above the line for $y>-x+1$
b. Shade below the line for $y \leq 2$.
c. Check: possible answer: $(1,3)$
d. Check: possible answer: $(4,0)$

Holt Algebra 2

