LESSON Practice B			
11-4 Compound Events			
A can of vegetables with no label has a $\frac{1}{8}$ chance of being green			
beans and a $\frac{1}{5}$ chance of being corn.			
1. Explain why the events "green beans" or "corn" are mutually exclusive.			
2. What is the probability that an unlabeled can of vegetables is either green beans or corn?			
Ben rolls a 1–6 number cube. Find each probability.			
3. Ben rolls a 3 or a 4.			
4. Ben rolls a number greater than 2 or an even number.			
5. Ben rolls a prime number or an odd number.			
Of the 400 doctors who attended a conference, 240 practiced family medicine and 130 were from countries outside the United States. One-third of the family medicine practitioners were not from the United States.			
6. What is the probability that a doctor practices family medicine or is from the United States?			
7. What is the probability that a doctor practices family medicine or is not from the United States?			
8. What is the probability that a doctor does not practice family medicine or is from the United States?			
Use the data to fill in the Venn diagram. Then solve.			
 Of the 220 people who came into the Italian deli on Friday, 104 bought pizza and 82 used a credit card. Half of the people who bought pizza used a credit card. What is the probability that a customer bought pizza 			

used a credit card. What is the probability that a customer bought pizza or used a credit card?

Solve.

10. There are 6 people in a gardening club. Each gardener orders seeds from a list of 11 different types of seeds available. What is the probability that 2 gardeners will order the same type of seeds?

Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor.

2. a. $\frac{1}{6}$ b. $\frac{1}{2}$ c. $\frac{1}{12}$ 3. a. $\frac{10}{13}$ b. $\frac{13}{17}$ c. $\frac{10}{17}$ 4. a. $\frac{10}{13}$ b. $\frac{4}{17}$ c. $\frac{40}{221}$

Challenge

1. HHHTHT 5. *t* = 12; 12 s

6. *t* = 14; 1 s

- 7. Does not exist; 15 s
- 8. a. possible answer: 80%
 - b. possible answer: 6 tosses
- 9. The performance of a stock over time

Problem Solving

1. a. $P(10) = \frac{135}{440}$ b. $P(Tr | 10) = \frac{6}{135}$ c. $P(10 \text{ and } Tr) = \frac{6}{440} \approx 0.014$ 2. a. $P(12) = \frac{85}{440}$ b. $P(Tr \text{ or } Te | 12) = \frac{7 + 12}{85} = \frac{19}{85}$ c. $P(12 \text{ and } (Tr \text{ or } Te)) = \frac{19}{85} \cdot \frac{85}{440} \approx 0.043$

- 3. a. $\frac{19}{440}$ b. $\frac{6}{439}$ c. $\frac{19}{440} \cdot \frac{6}{439} \approx 0.0006$
 - d. Dependent; possible answer: the second student is one of the remaining 439 students.
- 4. D 5. F

Reading Strategy

- 1. Independent
- 3. Dependent
- 2. Independent

6. Dependent

- dent 4. Independent
- 5. Independent
- 8. Event 1
- 9. Event 2

7. Dependent

LESSON 11-4

Practice A

- 1. These events are mutually exclusive since each student can choose only one card.
- 2. These events are not mutually exclusive since a card can be both black and a 10.
- 3. $\frac{7}{12}$ 4. $\frac{2}{5}$

5.
$$\frac{1}{3}$$
 6. $\frac{1}{2}$

9.
$$\frac{2}{3}$$
 10. $\frac{10}{13}$ or 0.77

 $\frac{1}{2}$

Practice B

1. These events are mutually exclusive because each can contains only one type of vegetable.

10. 0.81

Practice C

1.	<u>14</u> 25	2. $\frac{3}{5}$
3.	$\frac{31}{113}$ or 0.27	4. $\frac{777}{1130}$ or 0.69
5.	$\frac{663}{1130}$ or 0.59	6. 0.07
7.	0.11	8. 0.29
9.	$\frac{183}{236}$ or 0.78	10. 0.43

Reteach

1. a. $\frac{10}{13}$ b. $\frac{1}{13}$ c. $\frac{11}{13}$ c. $\frac{11}{13}$ d. $\frac{1}{13}$ b. $\frac{1}{13}$ c. $\frac{2}{13}$ 3. a. $\frac{26}{52}$ b. $\frac{4}{52}$ c. $\frac{2}{52}$ d. $\frac{7}{13}$ 4. a. $\frac{13}{52}$ b. $\frac{12}{52}$ c. $\frac{3}{52}$ d. $\frac{11}{26}$

Challenge

- 1. Given: *P*(*A*) = 0.25, *P*(*A* or *B*) = 0.35, *P*(*A* and *B*) = 0.05. Determine: *P*(*B*)
- 2. 15%

3. a.
$$\frac{1}{4} = \frac{2s}{5s+6}$$

- b. 16 songs
- c. $\frac{7}{8}$
- 4. The probability of the shaded area is subtracted from the sum of the probabilities of the individual sets.
- P(A or B or C) = P(A) + P(B) + P(C) P(A and B) - P(A and C) - P(B and C) + P(A and B and C)

Problem Solving

- 1. a. The total number of male students; 44
 - b. The total number of students in favor of the change; 54
 - c. 54 20 = 34

e.
$$\frac{44}{100} + \frac{54}{100} - \frac{34}{100} = \frac{64}{100} = 0.64$$

2. a. 100 - 44 = 56 b. 100 - 54 = 46

- c. The number of females who are opposed to the change; 36
- d. $\frac{56}{100} + \frac{46}{100} \frac{36}{100} \frac{66}{100} = 0.66$
- 3. $\frac{27}{100} + \frac{54}{100} \frac{18}{100} = \frac{63}{100} = 0.63$

Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor.